DOLL·E

Gesture-Controlled Automation For Remote Filmmaking

IRI Research Project 2021-2022

Presented by Olivia Loh

Introduction

Olivia Loh

Year: Senior

Major: Computer Engineering

Minor: Film, Television, Digital Media (FTVDM)

Project: Gesture-Controlled Automation for Remote Filmmaking

Mentor: Professor Jeff Burke

DOLL·E Conception

Motivation

- Effects of COVID on film industry:
 - Social, collaborative, and practical field
 - Film production slowdown due to social distancing
- Remote-filmmaking and virtual production mitigates this slowdown

• Enhance remote-filmmaking by integrating gesture-control to create a more intimate filming experience and convenient user interface

Background

- Current remote filmmaking software facilitates high-quality end-to-end live streaming service
- Gesture control implemented in automobiles and smartphone
- Ongoing research on gesture recognition using deep learning
- I propose to investigate the applications of gesture control as a new form of teleoperation for physical virtual work

Field Study and Use Cases

- When is gestural control useful?
 - The "subtlety and dynamic range of fingers" as opposed to buttons or voice control
- When is remote control useful?
 - During the pandemic. When crew members need to quarantine, they can still be "present" on set
 - \circ $\,$ $\,$ Shooting at overseas locations. Flying less crew to locations cut travel costs.
 - o Operating large equipment: Lighting equipment, Jibs, Dolly, Cranes, Mechanical Effects
 - Filming in difficult situations, such as aerial shots, underwater shots, cold or hot climate
- Use Cases for Different Film Set Roles:
 - Cinematographers
 - Smoothly control fluid head tripod to produce subtle moves in shot.
 - Actors
 - Can more naturally drive their own action instead of automated mechanical effects,
 - Directors
 - Communicate with their "splinter" (second) crew

DOLL·E

DOLL·E Progress

Choosing Gestures

CUE STAND BY

SPEAK MORE SOFTLY

SPEAK UP

SPEAK OR LOOK TOWARDS THIS CAMER

- Objectives:
 - Intuitive and Natural \cap
- Many filmmakers with different roles on set
 - (e.g. cameraman, lighting, etc.)
 For the purposes of my project, I decided to focus on cinematographer
- Chose 4 hand signals: \circ Cue \rightarrow Camera Rolling

 - Palm Up \rightarrow Move dolly: Forwards, Ο Backwards, Left, Right
 - \circ Fist \rightarrow Stop dolly
 - $Cut \rightarrow Stop$ 0

Recognizing Hand Gestures and

Hand Gesture Recognition: Skeletal Approach

- Computer Vision:
 - Pros:
 - Completely contactless HCI
 - A simple webcam would suffice
 - Cons:
 - Change in lighting conditions
 - Occlusion
 - Background colors (depend on vision technique)
- Skeletal method:
 - Perform hand segmentation by calculating 3D connections and Euclidean distance over hand skeleton pixels
 - Good for dynamic hand gesture recognition

Hand Gesture Recognition: Skeletal Approach

- MediaPipe API
 - Uses regression (direct coordinate prediction) to robustly locate 21 3-D points of hand. Dataset of ~30K labelled images serves as ground truth
- Tensorflow Library
 - Multi-layer perceptron network. Takes in vector input and uses two ReLU hidden layers and one softmax final layer to output class probability score
- MediaPipe and Tensorflow Open-Source Example: <u>https://github.com/kinivi/hand-gesture-recognition-mediapipe/</u>
 - Came with pre-trained model and dataset of poses
 - Added additional pose data and re-trained model:
 - Training data: 4 different poses with 1000 sets of 21 hand points each

Metrics for Movement Detection: Two-Axis

- X-axis
 - Midpoint of bounding box

- Z-axis
 - Length of bounding box
 - Area of bounding box

Least Squares Regression: Curve Fitting for Depth as a Function of Length

Least Squares Regression: Curve Fitting for Depth as a Function of Area

- Quadratic model
- Yields lower bias and variance

Noise Corrections

1. Utilize the area of bounding box and previously fitted function to determine instantaneous velocity.

$$\frac{dA}{dt} \cdot \frac{dz}{dA} = \frac{dz}{dt}$$

1. Attenuating resulting values that surpass the lower and upper threshold.

2. Baseline speed + this value: [70 - 30, 70 + 30]

Communications

- Uni-directional Communication
 - Traditional Server Client Model
 - MQTT Protocol:
 - Publish/Subscribe to organized topics
 - Suitable for controlling IoT devices
 - Lightweight, easy to implement for prototyping
 - Low power consumption
 - (also capable of bi-directional communication)

Executing Dolly Movement

- Robot Design:
 - Simulating a real-life film dolly
 - Mecanum wheels for smooth forwards, backwards, right, left movement. No turning required
 - Motors driven by PWM pins to control speed

DOLL·E Results

DOLL·E

User Study

• Users were asked to move the dolly around to frame a shot of an apple and a rose lying next to each other

Demo Video

Survey Results

- Tasks Timing:
 - Each user took around 40s to 80s to complete the tasks
- Gestural Control & UI
 - Easy to Learn Controls: 4.83
 - Intuitive Interface: 4.33
 - "Natural-ness": 4.5
 - Lag: 4.167
- Remote Control & Mechanical Automation
 - Speed of robot reflects hand speed: 2.5
 - Direction of robot reflects hand direction: 3.833
 - Lag: 4
- Filming with the Robotic Dolly
 - Fluidity of robot motion, "cinematic-ness": 3.417
 - Time spent setting up a shot: 3.667

DOLL·E Conclusion

Conclusion

- Using the Mediapipe open source tool for skeletal-based computer vision yielded noise that affected the program's performance.
- Area as a more reliable metric than distance.
 - Although this could have been be affected by noise
- Users agree that hand gestures for controlling the robotic dolly felt natural, but the speed of dolly movement did not fully reflect the speed of their hand motion.
- Speed determined by pixel distance or area was harder to model than I expected
 - Longer sample window \rightarrow higher accuracy
 - Instantaneous velocity is not accurate due to jitter from inaccurate samples
 - Trade-offs:
 - Shorter sampling window → faster processing and message transmission

Next Steps

- Techniques for better sampling and noise elimination
- Issue of "resetting" hand motion upon hand reaching edge of screen
 - Most students found this unnatural and cumbersome
- Better hardware
 - Most students attributed dissatisfaction of mechanical automation to hardware limitations
 - Motors with more torque
 - PCB and soldered components instead of breadboard and loose wires
- Optimize algorithms for less lag and higher efficiency
- Implement a third axis (y-axis) to enable a tilt up and tilt down option on dolly's camera

Other Applications

- Disabled
- Elderly
- Physical labor
- High risk construction work
- Surgical robotics
- Medical treatments

Special Acknowledgments

Professor Jeff Burke
Professor Leonard Kleinrock
Zhaoyu Wu
Professor Susan Littenberg
Professor William McDonald

Thank you! Any questions?